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Application of machine learning to structural

molecular biology
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SUMMARY

A technique of machine learning, inductive logic programming implemented in the program GOLEM, has
been applied to three problems in structural molecular biology. These problems are: the prediction of
protein secondary structure; the identification of rules governing the arrangement of B-sheets strands in
the tertiary folding of proteins; and the modelling of a quantitative structure activity relationship (QSAR)
of a series of drugs. For secondary structure prediction and the QsAR, GOLEM yielded predictions
comparable with contemporary approaches including neural networks. Rules for B-strand arrangement
are derived and it is planned to contrast their accuracy with those obtained by human inspection. In all
three studies GOLEM discovered rules that provided insight into the stereochemistry of the system. We
conclude machine leaning used together with human intervention will provide a powerful tool to

discover patterns in biological sequences and structures.

1. INTRODUCTION

The developments of gene cloning and sequencing are
leading to an explosion of information in molecular
biology. The identification of a new protein sequence
via its gene raises the question of characterizing its
three-dimensional structure. As experimental struc-
ture determination by crystallography and nuclear
magnetic resonance remain time-consuming and
dependent on milligrams of material, the theoretical
approach of predicting protein conformation from
sequence is of increased importance. Additionally,
characterization of the function of a protein leads to
the question of designing molecules that can regulate
its activity and may serve as a therapeutic agent.
Computer modelling is widely used to quantify
structure-activity relationships (QsaR) as a guide for
drug design. Many theoretical approaches to these
problems are empirical: rules are gleaned from
observations.

In this paper we test the idea of applying machine
learning as a tool to aid scientists in the discovery of
patterns in biological data. Machine learning is
considered to be an alternative method to visual
examination of data (perhaps aided by sophisticated
graphics), or the use of statistical methods. In
particular we use inductive logic programming (ILP)
as implemented in the computer program GOLEM
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Rorer Ltd, Dagenham Research Centre, Rainham Road South,
Dagenham RM10 7XS, U.K.

tPresent address: Oxford University Computing Laboratory,
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(Muggleton & Feng 1990), to derive rules that relate
protein chemical structure, including sequence, into
information about conformation and function. Three
application areas are considered: (i) the prediction of
protein secondary structure from sequence; (ii) the
identification of rules describing the three-dimensional
folding of B-sheet strands in globular proteins as a step
towards tertiary structure prediction; and (iii) the
derivation of a QsAR for a series of drugs that bind to a
protein.

This work has broader implications for develop-
ment of machine learning (Weiss & Kulikowski 1991)
in addition to the specific advances in modelling in the
particular areas. The application of machine learning
to the discovery of patterns in scientific data is known
as ‘scientific discovery’. It is only by the application of
machine learning to current scientific problems that
the general field will advance. Molecular biology is
an ideal test bed for applying machine learning to
science: there are a number of suitable important
problems, the increasing pace of data acquisition is
swamping traditional methods of pattern discovery,
the data is mostly in discrete symbolic form.

2. INDUCTIVE LOGIC PROGRAMMING BY
GOLEM

In 1P a set of examples is examined and rules are
derived which are expressed as logical relationships
between objects. GOLEM (Muggleton & Feng 1990)
encodes relationships in the first order predicate
calculus which is sufficiently expressive to encode
most of the concepts used to describe biological
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molecules. The aim is not simply to obtain predictive
rules but also to derive understandable logical
relationships. This approach contrasts with numeri-
cally based methods, including neural networks
(Simpson 1990), that often have the drawback that
the resultant rules are difficult to interpret. Techni-
cally the computer program, GOLEM, is written in C
with the input and output of logical concepts encoded
in the logic programming language PROLOG (Clocksin
& Mellish 1981).

Figure 1 shows the general learning method used by
GOLEM. The input consists of the observations encoded
as positive and as negative examples together with the
background knowledge describing the system. The
learning process by GOLEM is:

1. Take two positive examples at random.

2. Generate a rule from the common properties of the
examples.

3. Evaluate the accuracy of this rule on the remaining
examples.

4. Repeat steps 1 to 3 several times (typically 10) and
generate the most accurate rule.

5. Add an additional positive example and repeat the
above to generate a more general rule.

6. Continue with step 5 until maximum coverage of
examples by rule occurs, then store rule in back-
ground knowledge.

7. Start at step 1 to search for next rule.

3. SECONDARY STRUCTURE PREDICTION

In protein secondary structure prediction, the local
sequence is examined to predict its main-chain

Application of machine learning techniques

conformation, in particular whether it adopts an o-
helix, B-sheet strand or coil. One approach is to
develop algorithms for a particular structural class
of proteins and here we report the application to the
all-o proteins that have o-helices and coil but little
or no f-sheet (for details see Muggleton et al.
(1992)).

A training set of 12 proteins was used. The input
consisted of the observations of the location of o-
helical residues in the protein. For example:

alpha(155C,110)

defines that residue 110 in the protein with code 155C
is in an a-helix. The background information is of two
types. The first defines the chemical structure of
residues, for example that 110 in 155C is valine(V):

position (155G, 110,V).

The second defines the chemical properties of the
residues, for example that valine is hydrophobic:

hydrophobic(V).

GOLEM induced rules governing o-helix forma-
tion. However this lead to a speckled prediction with
isolated residues being predicted as helical. Two cycles
of smoothing were learnt by GOLEM.

The GOLEM rules yielded an accuracy of 78% for the
number of residues correctly predicted a-helix or coil
in the training set and of 81% in the test set. These
values have an estimated error of +2%. These results
are better than a prediction by neural network on this
o/ class that yielded 76% (Kneller et al. 1990). o-
Helices have a periodicity of 3.6 residues per turn and
the location of sequential residues can be plotted on a

Experimental test of accuracy, coverage and
compression of rules on observations

Y

Observations
INPUT TO / ,
GOLEM Hypothesise
\ rules
Background /
knowledge

A

Add rules accepted to background knowledge

Y

OUTPUT
OF RULES

Figure 1. Inductive logic programming as implemented by GOLEM.
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internal face of helix
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hydrophobic,

hydrophobic not_lys
large,
not_aromatic,
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not_pro
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. not_pro
not_aromatic, P

not_pro

external face
of helix

Figure 2. One rule for a-helical prediction mapped onto an
a-helical wheel. The residue numbers are given together
with the allowed amino acids at each position.

circle. Figure 2 plots one of the rules on such a helical
wheel. GOLEM learnt the tendency for a-helices to have
one face that is formed from hydrophobic residues and
another more polar face. However, some of the more
specific features of the rules such as the restriction that
proline is only allowed at positions 3 and 7 on one face
of the helix is not understood at present. Thus this
rules suggests a new analysis of protein structure to
identify the importance of this feature.

4. B-SHEET TOPOLOGY

One approach in the prediction of protein structure is
first to identify the local secondary structure and then
to determine the approximate three-dimensional
packing of these a-helices and f-strands in the
tertiary fold. Here we consider a subset of the
problem: the folding of o/f proteins. In an o/
domain there tends to be an alternation of a-helices
and B-sheet strands as one progresses along the chain.
The fold is often represented in a schematic diagram
(see figure 3). A key aspect of the fold is the
arrangement of strands in the sheet defined by order
and direction. Previous analyses of sheet arrangements
have identified several principles (e.g. Richardson
1977, 1981; Sternberg & Thornton 1977a,b). Here we
show that these rules and some new rules can be learnt
automatically by GOLEM.

The data of B-sheet arrangements was taken from
the pAPAIN database (Clark et al. 1991; Rawlings et al.
1985) that encodes structural features in PROLOG. A set
of 23 non-homologous /B structures from Orengo
et al. (1993) was used and from these seven were
randomly chosen as a test set. The object was to learn
rules for the following features:

edge(P,S)

which states that strand S in protein P is positioned at
the edge of a sheet.

in(P,S1,52)

Phil. Trans. R. Soc. Lond. B (1994)
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v edge prediction W internal prediction

Figure 3. A schematic diagram of the arrangement of -
strands and o-helices in dihydrofolate reductase. Each B-
strand is drawn as a triangle whose apex points up or down
depending on whether it is viewed from the amino or
carboxyl terminus. a-Helices are drawn as triangles. N and
C denote the termini. The figure shows the prediction of
edge and internal strands based on rules for edge and
not_edge induced by GOLEM.

which formalizes the winding direction and states that
strand S1 is closer to the edge than sequential strand
S2 in protein P.

adj(P,S1,52)

which states that sequential strands S1 and S2 in
protein P are adjacent in a sheet.

parallel(P,S1,S2)

which states that sequential strands S1 and S2 in
protein P are parallel.

The background knowledge encoded: the length of
the strand together with several aspects about the
nature of the connection between two strands
including the length of the connection and whether
this included an o-helix. There was also information
about hydrophobicity of the strands evaluated as the
free energy change (Kyte & Doolittle 1982) on
transfering the residues in the strand from a non
polar environment into water. Thus the more
hydrophobic strands have a larger hydrophobic
energy. The features encoded were: the total hydro-
phobic energy, the average hydrophobic energy per
strand residue and the ranks of total and the average
hydrophobic energies of the strand.

The rules learnt for edge, not_edge, in and not_in
(out) will be used to illustrate the results. Three rules
were learnt for edge, and one rule for not_edge. The
simplest of the rules found for an edge strand
expressed in PROLOG is:

edge(A,B): rth(A,C,B,rth0).
In English this reads:

a strand is at the edge if
it has the lowest rank of total hydrophobic
energy in its sheet.

On the testing set this covered 0.482 of edge strands
and predicted with an accuracy of 0.765.

The rule for not_edge is:

a strand is not at the edge if
it does not have the lowest rank of average
hydrophobic energy in its sheet
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number

-2
difference in rank of total hydrophobicity

0 2

Figure 4. The difference in rank of total hydrophobicity of strands classified by winding direction. In denotes the
second sequential strand is closer towards the centre of the sheet, out that the second strand goes towards the
edge of the sheet. The figure shows that ‘in’ strands dominate only when the difference in rank is 2 or more.
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and its rank of total hydrophobic energy in
its sheet is at least 2 and
the following strand is in the same sheet.

One rule was learnt for in:

strand B is closer to the edge of the sheet than
strand C when C directly follows B in
sequence if
the rank of total hydrophobic energy of C is
2 greater than B and
they are connected <50 residues.

One rule for out (not_in):

strand C is closer to the edge of the sheet than
strand B when C directly follows B in sequence if
the rank of total hydrophobic energy of B
>C and
B is not the last strand in the sheet.

These rules agree and formalize an earlier analysis
that suggested strands are ordered in terms of their

hydrophobicities, with the most hydrophobic strands
in the centre (Sternberg & Thornton 1977a).
Importantly they also suggest new features that
might well remain unnoticed by simple human
examination. For example, figure 4 illustrates the
rule that for a pair of sequential strands to progress
into a sheet requires an increase in rank of total
hydrophobicity of two but going out requires the same
or lower rank. It is planned to explore the extent to
which these rules can be used to aid in protein
structure prediction. The in—out rules promise to be
effective. Figure 5 shows the prediction of winding
direction on a four sheets in the test set. On all the test
data, 31 directions were correctly predicted, eight
incorrectly and only five sequential strands were not
covered by the rule.

5. DRUG DESIGN

The modelling of a quantitative structure activity
relationship (QsaR) for a series of compounds remains

3GBP- A
4 | 1IRHD
4
2
2
2
2 l l 2
g0
5 8 7 9 10 6
5 6 0
= 8ADH - C 15 4 3 1 2
Q
5
= 4 1
g ! 3GBP-B
Il L]
2 L 2
0 0
12 11 10 13 14 15 9 8 6 7

sequential order of strands

Figure 5. Prediction of winding direction of strands. Solid arrows correct predictions for two sequential strands,
broken arrows incorrect predictions. The sheets are: IRHD in rhodanese; 8ADH-C in liver alcohol dehydro-

genase; 3GBP-A and 3GBP-B in galactose binding protein.
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a central tool in the systematic design of drugs. The
object is to relate the chemical properties of
substituents on a core pharmacaphore to the activity
of the molecules. The traditional approach stems from
the pioneering work of Hansch and coworkers
(Hansch et al. 1962, 1982; Hansch 1969) and
effectively employs nonlinear regression from descrip-
tors of the properties of the substituents. The most
commonly used descriptors are related to hydropho-
bicity and volume. Recently neural networks have
been applied to derive a QsaR taking the Hansch
parameters as input (see, for example, Andrea &
Kalayeh 1991) and reported marked improvements
over linear regression. We have, however, repeated
this study with cross validation trials in which the test
data is chosen at random rather than matched to the
training data. Our study finds no statistically
significant improvement by neural networks over
nonlinear regression (Hirst et al. 19944a,b; King et al.
1993).

A major problem with both the Hansch approach
and neural networks is that they provide little insight
into the stereochemistry of the drug—receptor inter-
action that can guide the design of new compounds.
ILP, which reasons symbolically rather than numeri-
cally , provides an approach to glean these insights.

GOLEM was applied (King et al. 1992; Hirst et al.
19944) to model the inhibition of E. ¢oli dihydrofo-
late reductase by 2,4-diamino-5-(substituted-benzyl)

(a)
NH,
Rs
Z “NH+
NP
R4 N N2
Rs
(b)
Leu-54
7
NH,
// Tle-50 HC—o0
- 3 =
% INH+
N /kl-i
T N N2
Ser-49 0
27 s T ey
3
SOLVENT

/N A{)PH MC[-ZO \

Figure 6. Trimethoprim binding to dihydrofolate reductase.
(@) Structure of trimethoprim analogues; (b) a cartoon of the
interaction of trimethoprim with dihydrofolate reductase
from the X-ray structure (Champness et al. 1986), faint
stippling indicates that the residue lies below the plane of
the phenyl ring, diagonal lines that the atoms are above.
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pyrimidines (Hansch et al. 1982; Roth et al. 1987;
Selassic et al. 1991) as exemplified by the drug
trimethoprim (figure 6a). The activity of the
compounds provided the observations. The positive
examples were of the form:

great(drugb5,drug9)

stating that drug 55 has greater inhibition than drug 9.
The negative examples were false statements and were
simply the converse:

great(drug9,drugb5).

The background knowledge defined the chemical
structure of the drugs, e.g.

streak (drug55,Cl,NH,,CHj)

which defines the substitutions at positions 3, 4 and 5.
In addition, the properties of each substituent is
expressed by descriptors, called physico-chemical
attributes, which are designed to help in the
formation of human understandable rules. The
attributes are: polarity, size, flexibility, hydrogen-
bond donor, hydrogen-bond acceptor, m donor,
acceptor, polarizability, branching and effect. This
was represented using different predicates for each
property and value, e.g.

polar(Br,polar3)

states that Br has polarity of value 3.

Five trials of the approach were performed
corresponding to random, non overlapping splits of
the data of the 55 drugs into testing sets of 11 drugs
with the remaining 44 forming the training set (Hirst
et al. 1994a). Over these five trials the average
Spearman rank correlation for the agreement
between predicted and true rank of the testing drugs
was 0.68 £ 0.11. To represent the traditional Hansch
approach while avoiding any bias due to the use of
different representations, the same data was modelled
by a regression on linear and squared terms of the
attributes. The average Spearman rank was
0.65 = 0.10. The better performance of GOLEM is not
statistically significant.

A major aim in this work was to obtain insight into
the stereochemistry of drug—receptor interactions. An
example of a rule generated is:

drug A is better than drug B if:
drug A has a substituent at position 3 with
hydrogen-bond donor=0 and
m-acceptor =0 and
polarity >0 and
size <3 and
drug A has a substituent at position 4 (i.e.
not hydrogen) and
drug B has no substituent at position 5.

In total 59 rules were found for the five cross-
validation runs on the pyrimidines. From these rules,
seven consensus rules were formed manually by
selecting the most commonly found features These
consensus rules (not shown) are simpler in form and
easier to understand than the automatically generated
rules. The consensus rules were tested against the five
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HUMAN : COMPUTER
1
1
Biological ]
Problem 1
1
1
1
1 Rules
\ Interpretation
1
Define Problem ' \
1
I Machine
Develop data ' Learning
Representation '
+
Predictive rules 1
1
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of problem Data Representation

+
Problem definition

Y

Final Rules

Figure 7. Summary of the approach envisaged for the
application of machine learning to scientific problems.

cross-validation data sets, giving an average Spear-
man rank correlation on the test data of 0.845. It is
straightforward to use the consensus rules to generate
the best predicted drug or drugs. Considering
positions 3 and 5, the only possible substituents,
using all physico-chemical attributes, with the
conjunction of: polarity <5, size <3, hydrogen-
bond donor=0, n-donor=0, c-effect <5, flexibility
<3, are OCHS3, I, Cl, and Br (O excluded). These are
therefore the substituents recommended for positions 3
and 5; the rules do not distinguish between these
groups. There are far fewer constraints at position 4,
only the conjunction of: polarity <5, and hydrogen-
bond donor=0.

Figure 64 is a cartoon of the stereochemistry of
trimethoprim binding to E. coli dihydrofolate
reductase as revealed at atomic resolution by
protein crystallography (Champness et al. 1986).
The 3 position is not exposed to solvent which is
accord with features of the suggestions of restraints
on its structure including that it should not be a
hydrogen bond donor at this position. The 4 position
is more exposed to solvent and has fewer constraints.

6. CONCLUSION

Figure 7 summarizes the approach envisaged for the
application of machine learning to scientific problems.
There is an interactive cycle between human analysis
and machine leaning. Initially traditional methods
process the data and develop representations that
characterize the system and rules describing the
relationship between the components of the system.
Next machine learning uses these representation to
identify new, and hopefully more powerful and
incisive, rules. Then human intervention is required
for interpretation of the rules and the cycle can be
repeated.

Phil. Trans. R. Soc. Lond. B (1994)
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The machine learning approach encoded in GOLEM
has been consistently applied to three distinct applica-
tions in structural molecular biology. The predictions
made for identifying a-helical secondary structures and
the rank order of drug activity are at least as good as
statistical approaches including neural networks. In
both applications, rules were generated that encoded
stereochemical principles. In drug design, these princi-
ples were in agreement with the knowledge of the
receptor (dihydrofolate reductase) revealed by protein
crystallography. Thus machine learning was extracting
information that might well direct a drug discovery
programme. In the work on the arrangements of B-
sheet, GOLEM rediscovered the principle of hydrophobic
ordering. In the three areas there were common features
in representing the problem into a form suitable for
machine learning as implemented by GOLEM. Chemical
structure such as hydrophobicity was assigned explicitly
to the objects be they residues, drug substituents or B-
strands. The resultant rules reasoned based on these
chemical attributes. We conclude that machine learning
exemplified in GOLEM provides a powerful approach to
extract principles from ever-increasing wealth of
biological data.

We thank Dr Dominic Clark, Dr Christopher J. Rawlings
and Dr Jack Shirazi for the PAPAIN database of protein
structural features; Dr Jonathan Hirst and Dr Ashwin
Srinivasan for helpful discussions and Professor Donald
Michie for encouragment in this work.
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